VEREIN DEUTSCHER INGENIEURE

Ladungssicherung auf Straßenfahrzeugen Zurrkräfte

Securing of loads on road vehicles Tie down forces

VDI 2700

Blatt 2 / Part 2

Ausg. deutsch/englisch Issue German/English

Die deutsche Version dieser Richtlinie ist verbindlich.

No guarantee can be given with respect to the English translation. The German version of this guideline shall be taken as authoritative.

Inhalt	Seite	Contents Page
Vorbemerkung	. 2	Preliminary note
1 Anwendungsbereich	. 3	1 Scope
2 Darstellung und Berechnung der gebräuchlichen Zurrarten	. 3	2 Glossary of symbols and terms
2.1 Verwendete Symbole		2.1 Symbols. 3 2.2 Terminology 4
 3 Basisannahmen für eine Ladungssicherung 3.1 Massenkräfte auf das Ladegut 3.2 Reibung zwischen Ladegut und Ladefläche 3.3 Zulässige Zurrmittel-Zugkräfte 	. 4 e 5	3 Basic assumptions for load restraint 4 3.1 Inertia forces on load
4 Gebräuchliche Zurrmethoden zur Rutschsicherung standfester, in sich stabiler Ladeeinheiten	. 7	4 Restraining stable objects
4.1 Niederzurren standfester Ladeeinheiten.4.2 Horizontales Zurren standfester Ladeeinheiten		4.1 Vertical lashings on stable objects 84.2 Horizontal lashings on stable objects 10
4.3 Schrägzurren in Querrichtung von standfesten Ladeeinheiten		4.3 Inclined traverse lashings on stable objects . 11
4.4 Schrägzurren in Längsrichtung von	12	4.4 Inclined longitudinal lashings on stable
standfesten Ladeeinheiten		objects
5 Gebräuchliche Zurrmethoden zur Kippsicherung nichtstandfester, in sich stabiler, quaderförmiger Ladeeinheiten	. 16	5 Restraining unstable rectangular objects 16
5.1 Niederzurren quaderförmiger Ladeeinheite	en 16	5.1 Vertical lashings on unstable rectangular objects
5.2 Schrägzurren in Querrichtung von quaderförmigen Ladeeinheiten	18	5.2 Inclined transverse lashings on unstable rectangular objects
5.3 Schrägzurren in Längsrichtung von		5.3 Inclined longitudinal lashings on
quaderförmigen Ladeeinheiten		unstable rectangular objects
Rungen oder beigestellter Träger 5.5 Diagonalzurren quaderförmiger Ladeeinheiten		blocking restraint
Laucennicucii	. 44	rectangular objects

VDI-Gesellschaft Fördertechnik Materialfluss Logistik

Fachbereich B6 Ladungssicherung

	Seite	Pa	ge
6	Gebräuchliche Zurrmethoden zur Kippsicherung nicht standfester, in sich stabiler, beliebiger Ladeeinheiten	6 Restraining unstable irregular objects 2	24
	6.1 Niederzurren nicht standfester, beliebiger Ladeeinheiten	6.1 Vertical lashings on unstable irregular objects	24
	6.2 Diagonalzurren nicht standfester, beliebiger Ladeeinheiten 26	6.2 Diagonal lashings on unstable irregular objects	26
7	Gebräuchliche Zurrmethoden zur Sicherung von einzelnen Ladegütern in Rollenform 29	7 Restraining cylindrical objects	29
	7.1 Niederzurren in fahrzeugfeste Rollenauflagen gegen Herausrollen in Querrichtung . 29	7.1 Vertical lashings on cradled cylinders positioned transversely	29
	7.2 Niederzurren in fahrzeugfeste Rollenauflagen gegen Herausrollen in Längsrichtung 31	7.2 Vertical lashings on cradled cylinders positioned longitudinally	2
	7.3 Schrägzurren bei Lagerung in fahrzeugfesten Rollenauflagen gegen Herausrollen in Querrichtung	7.3 Inclined lashings on cradled cylinders positioned transversely	31
	7.4 Schrägzurren bei Lagerung in fahrzeugfesten Rollenauflagen gegen Herausrollen in Längsrichtung	7.4 Inclined lashings on cradled cylinders positioned longitudinally	33
	7.5 Sicherung gegen stirnseitiges Kippen von Rollen aus fahrzeugfesten Rollenauflagen . 34	7.5 vertical lashings on cylinders nested in cradles	34
	7.6 Lagerung in untereinander zusammenhängenden, aber gegenüber der Ladefläche losen Kantholz-Geschirren oder -Rahmen . 34	7.6 Inclined lashings on cylinders nested in cradles	
8	Schrägzurren dünner Platten in Querrichtung über einen längs stehenden "A-Bock"	8 Restraining thin sheets on fixed A-frames 3	35
9	Gebräuchliche Zurrmethoden zur Sicherung gebündelter Ladeeinheiten oder loser Stäbe zwischen Rungen	9 Restraining loose objects in bundles 3	37
	9.1 Ohne Zwischenlagen379.2 Mit Zwischenlagen39	9.1 Without inter-layer packing	

Vorbemerkung

In der Richtlinie VDI 2700 werden grundlegende Hinweise und Empfehlungen für die Ladungssicherung der am häufigsten transportierten Güter gegeben. Die vorliegende Richtlinie "Zurrkräfte" enthält eine prinzipielle Darstellung, mit welchen Kräften bei bestimmten Fahrbedingungen zu rechnen ist und welche Kräfte auf die Zurrmittel einwirken, wenn eine wirksame Verzurrung des Ladegutes erreicht werden soll.

Mit den hier behandelten Methoden der Verzurrung sind die weitaus meisten Ladungssicherungsmethoden für Stückgüter abgedeckt.

Nach den Formeln und Beispielen sind für jeden Betrieb und jeden Ladungssicherungsfall Rechengänge ableitbar.

Preliminary note

Hints and recommendations for the restraining of the commonly transported goods are provided in guide-line VDI 2700. This guideline VDI 2702 "Tie Down Forces" demonstrates in principle the forces to be encountered under specific operating conditions. It also discusses the forces acting on the lashing devices in order to achieve effective load restraint.

The lashing methods discussed in this guideline cover most of the possible load restraint cases for mixed loads.

The formulas and examples allow the derivation of calculations for any operating and any load condition.

1 Anwendungsbereich

Stückguttransport auf Lastkraftwagen und Anhängefahrzeugen im Straßenverkehr.

2 Darstellung und Berechnung der gebräuchlichen Zurrarten

2.1 Verwendete Symbole

Beschreibung	Sym- bol	Ein- heit	erstmals verwendet in	
			Ab- schnitt	Bild
Gewichtskraft	G	daN	3.1	2
Reibkraft	R	daN	4.1	1
Reibkraft durch Zurrmittel i	$R_{\rm i}$	daN	4.1	5
Zugkraft im Zurrmittel i	Z_{i}^{i}	daN	4.2	3
Vertikalkomponente von Z_i	$Z_{\rm iv}^{\rm i}$	daN	4.1	5
Querkomponente von Z_i	Z_{iq}^{iv}	daN	4.2	6
Längskomponente von Z_i	Z_{il}^{iq}	daN	4.2	6
Vorspannkraft an Stelle i	Z_{io}^{ii}	daN	5.2	_
Höhe	H	mm	4	1
Zurrpunkt-Höhe	H_{z}	mm	6.2	17
Schwerpunkt-Höhe	H_{s}^{L}	mm	6.1	16
Breite (Fahrzeug-Querrichtung)	B	mm	4	1
Zurrpunkt-Breitendistanz (Fahrzeug-Querrichtung)	$B_{\rm Z}$	mm	6.2	17
Aufstandsbreite (Fahrzeug-Querrichtung)	$B_{\rm a}$	mm	6.1	16
Länge (Fahrzeug-Längsrichtung)	L	mm	4	1
Zurrpunkt-Längendistanz (Fahrzeug-Längsrichtung)	$L_{\rm z}$	mm	6.2	17
Aufstandslänge (Fahrzeug-Längsrichtung)	$L_{\rm a}$	mm	6.1	16
resultierende Länge am Ladegut	$L_{ m r}$	mm	_	24
Vertikalkomponente von $L_{\rm r}$	$L_{ m v}$	mm	8	24
Querkomponente von $L_{\rm r}$	L_{q}	mm	8	24
wahre Länge am Zurrmittel i	$L_{ m i}$	mm	4.2	6
Vertikalkomponente von $L_{\rm i}$	$L_{ m iv}$	mm	4.3	7
Querkomponente von $L_{\rm i}$	$L_{\rm iq}$	mm	4.2	6
Längskomponente von $L_{\rm i}$	$L_{ m il}$	mm	4.2	6
Rollendurchmesser	D	mm	7.1	20
Rollen-Stützweite	W	mm	7.1	20
Zurrmittel-Umschlingungswinkel	α	Grad	5.2	12
Beschleunigungsfaktor	f	_	3.1	_
Quer-Beschleunigungsfaktor	f_{q}	_	3.1	1
Längs-Beschleunigungsfaktor	f_1	_	3.1	1
Wankfaktor für "nicht standfest"	$f_{ m w}$	_	3.1	1
Gleit-Reibbeiwert	μ	_	3.2	2
Kreiszahl	π	_	5.2	_
natürliche Wachstumszahl	e	_	5.2	_
Zurrmittelpaare/Überspannungen	n	-	4.2/4.1	_

1 Scope

Transport of mixed loads on trucks and trailers.

2 Glossary of symbols and terms

2.1 Symbols

Description	Sym- bol	Unit	First shown	
			Sec- tion	Fig.
Weight of load	G	daN	3.1	2
Friction force	R	daN	4.1	1
Friction caused by restraint i	$R_{\rm i}$	daN	4.1	5
Tension force in lashing i	$Z_{\rm i}$	daN	4.2	3
Vertical component of Z_i	$Z_{\rm iv}$	daN	4.1	5
Transverse component of Z_i	Z_{iq}	daN	4.2	6
Longitudinal component of Z_i	$Z_{\rm il}^{^{1}}$	daN	4.2	6
Pre-tension force at point i	Z_{io}	daN	5.2	-
Height	Н	mm	4	1
Restraint point elevation	$H_{\rm z}$	mm	6.2	17
Centre of mass elevation	$H_{\rm s}^-$	mm	6.1	16
Width	В	mm	4	1
Anchor-point transverse distance	$B_{\rm Z}$	mm	6.2	17
Width of load contact area	$B_{\rm a}$	mm	6.1	16
Length	L	mm	4	1
Anchor-point longitudinal distance	$L_{\rm z}$	mm	6.2	17
Length of load contact area	$L_{\rm a}$	mm	6.1	16
Resulting length of load	$L_{ m r}$	mm		24
Vertical component of $L_{\rm r}$	$L_{\rm v}$	mm	8	24
Transverse component of $L_{\rm r}$	L_{q}	mm	8	24
True length of lashing i	$L_{\rm i}$	mm	4.2	6
Vertical component of $L_{\rm i}$	$L_{ m iv}$	mm	4.3	7
Transverse component of $L_{\rm i}$	$L_{\rm iq}$	mm	4.2	6
Longitudinal component of $L_{\rm i}$	$L_{ m il}$	mm	4.2	6
Cylinder diameter	D	mm	7.1	20
Cylinder support width	W	mm	7.1	20
Encircling angle of lashing	α	degree	5.2	12
Acceleration factor	f	_	3.1	_
Transverse acceleration factor	f_{q}	_	3.1	1
Longitudinal acceleration factor	$f_{\rm l}$	_	3.1	1
Swaying factor for "Unstable"	$f_{ m w}$	_	3.1	1
Sliding friction coefficient	μ	_	3.2	2
Ratio circumference: diameter	π	_	5.2	_
Natural number – 2.71828	e	_	5.2	_
Lashing pairs/No. cover lashings	n	_	4.2/4.1	_